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ABSTRACT We deal with the inventory level control problem for Supply Chains (SCs) whose dynamics
is affected by two sources of uncertainties: 1) perishable goods with uncertain deterioration rate, 2) an
uncertain future customer demand freely varying inside a given bounded set.
The purpose of our contribution is to propose a smooth Replenishment Policy (RP) maximizing the
satisfied customer demand and minimizing the inventory level. These requirements should be satisfied
despite the above uncertainties and unforeseen customer demand patterns trespassing the "a priori" assumed
boundaries. To this purpose we define a Resilient RP (RRP) using a new Robust Adaptive Model Predictive
Control (RAMPC) approach. This requires solving a Minimax Constrained Optimization Problem (MCOP).
To reduce the complexity of the solving algorithm, we parametrize the predicted replenishment orders in
terms of polynomial B-spline basis functions.

INDEX TERMS supply chain management, optimal inventory control, robust adaptive model predictive
control, minimax optimization.

I. INTRODUCTION
The numerous applications of MPC to production-inventory
control problems are widely recognized and demonstrated
by an extensive literature (see e.g. [1], [2] and references
therein). The success of MPC is mainly due to : 1) the capa-
bility of handling hard constraints imposed on some physical
variables, 2) the capability of on-line adapting the actual
control action through a receding horizon implementation.
In this context a serious problem is raised by the presence of
perishable goods in the inventory system. Due to the widely
acknowledged importance of this topic (see e.g. [3]- [6] and
references therein), many papers apply MPC techniques to
the inventory level of SC’s with deteriorating items [7]- [15].

None of the above mentioned papers consider another
important source of performance degradation: unpredicted
changes of market trend. On the other hand it is of funda-
mental importance that an SC be endowed with the capacity
for resilience, i.e. the ability to promptly react to such events
[16]. Extending previous results ( [17], [18]), here we also
take into account unexpected behaviors of the customer de-
mand.
The main novelties of this contribution with respect to [17]-
[18] are:

• endowing the RP with a resilience property to rapidly

and effectively recovering from unpredicted and anoma-
lous demand behaviors.

• solving the robust optimization problem considering
both sources of uncertainty: deteriorating factor and
forecast demand.

A preliminary version of this paper can be found in [19].
On the basis of the previous considerations, the methodolog-
ical contribution of this paper is the definition of a smooth
RRP for the optimal inventory control problem under the fol-
lowing operating conditions: perishable wares with uncertain
decay factor, unforeseen customer demand patterns violating
some "a priori" assumptions. We adopt an RMPC approach
and to allow the SC to quickly react to unpredictable demand
patterns we also introduce an adaptation mechanism. The
advantage of the resulting RAMPC is the possibility of
reconciling opposite control requirements: 1) maximize the
satisfied customer demand, 2) avoid an excessive inventory
level, 3) produce a smooth RP, 4) fast react to unforeseen
patterns of the customer demand.
To greatly reduce the number of calculations involved by the
RAMPC, we parametrize the predicted replenishment orders
by means of B-splines functions. This choice is due to: 1)
B-splines are smooth functions universal approximators of
curves with different shape over different intervals, 2) B-
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splines admit a parsimonious parametric representation, [20].
Another advantage of this parametrization is the possibility
of reformulating the MCOP as a Constrained Robust Least
Squares (CRLS) problem that can be efficiently solved using
interior-point methods [21]. This also allows us to prove the
feasibility of the MCOP and the uniform boundedness of the
physical variables (i.e. the inventory level and the control
law). These properties are proved without any assumption
on the length of the prediction horizon. In this regard, we
surprisingly note that two major issues of MPC like stability
and feasibility [22] are not explicitly considered in many
MPC techniques for SC management. This paper is organized
as follows. Mathematical background on B-splines functions
and on CRLS is provided in Section II. The dynamic model
of the considered uncertain plant is described in Section
III. The RAMPC approach is explained in Section IV. The
corresponding MCOP is reformulated as a CRLS problem in
Section V. Stability and feasibility are proved in Section VI.
Numerical simulations are described in Sections VII. Some
concluding remarks are drawn in Section VIII.

II. MATHEMATICAL BACKGROUND
A. POLYNOMIAL B-SPLINES FUNCTIONS
An analytic, B-spline function is defined as, [20]:

s(t) =
ℓ∑

i=1

ciBi,d(t), t ∈ [t̂1, t̂ℓ+d+1] ⊆ R (1)

where the real scalars ci’s are the control points of s(t),
the integer d is the degree of the polynomial function s(t),
the (t̂i)

ℓ+d+1
i=1 denotes the non decreasing sequence of knot

points, the Bi,d(t) are the uniformly bounded polynomial B-
spline basis functions of degree d. They can be computed
through the following recursive formula

Bi,d(t) =
t− t̂i

t̂i+d − t̂i
Bi,d−1(t)

+
t̂i+1+d − t

t̂i+1+d − t̂i+1

Bi+1,d−1(t), d ≥ 1 (2)

with Bi,0(t) = 1 if t̂i ≤ t < t̂i+1, otherwise Bi,0(t) = 0.
In (2) possible division by zero are resolved by the conven-
tion that "anything divided by zero is zero".
An equivalent representation of s(t) in (1) is

s(t) = Bd(t)c, t ∈ [t̂1, t̂ℓ+d+1] ⊆ R (3)

where c
△
= [c1, · · · , cℓ]T and Bd(t)

△
= [B1,d(t), · · · , Bℓ,d(t)]

Convex hull property. All the values of s(t), ∀t ∈
[t̂j , t̂j+1], j > d, are contained in the convex hull of its d+ 1
control points cj−d, · · · , cj . △

Smoothness property. If t̂i < t̂i+1 = · · · = t̂i+m <
t̂i+m+1, with 1 ≤ m ≤ d + 1 then the s(t) is continuously
derivable up to order d−m at knot t̂i+1. This property implies
that the spline smoothness can be changed using multiple
knot points. It is common choice to set m = d + 1 multiple
knot points for the initial and the last knot points and to

evenly distribute the other ones. In this way (1) assumes the
first and the final control points as initial and final values. △
Remark 1: From (3) it is apparent that, once the degree d
and the knot points t̂i have been fixed, the scalar B spline
function s(t), t ∈ [t̂1, t̂ℓ+d+1], is completely determined by
the corresponding vector c of ℓ control points. △
The sampled version s(k T )

△
= s(k), k ∈ Z+ is obtained by

direct uniform sampling (with period T ) of the corresponding
polynomial B-spline (1).

B. THE CRLS PROBLEM
[21], Consider a set of approximated linear equations Df ≈
b where D ∈ Rr×m, with r > m, is the design matrix and
b ∈ Rr is the observer vector. Both D and b are affected
by bounded uncertainties of unspecified nature: ∥δD∥ ≤ β
and ∥δb∥ ≤ ξ (the matrix norm is the spectral norm). The
RLS consists in finding the value f̂ of f ∈ Rm solving the
following minimax optimization problem

min
f

max
∥δD∥≤β, ∥δb∥≤ξ

∥(D + δD)f − (b+ δb)∥ (4)

Using norm properties, it can be shown that

max
∥δD∥≤β, ∥δb∥≤ξ

∥(D + δD)f − (b+ δb)∥

= ∥Df − b∥+ β∥f∥+ ξ

Hence f̂ can be more easily computed as

min
f

∥Df − b∥+ β∥f∥+ ξ (5)

The CRLS version also requires that f satisfies the follow-
ing component-wise linear constraints:

f ≤ f ≤ f̄ (6)

Remark 2: Note that the term ∥δb∥ in (4) only appears in
(5) through its norm upper bound ξ, which is independent of
f . Hence the value of f solving the minimization problem
is not altered if ξ is removed from the objective function.
In Section V, we show how to solve the MCOP implied by
the RAMPC algorithm even in the case of uncertain future
customer demand. △

III. THE DYNAMICAL MODEL OF THE SC
Figure 1 shows the structure of the considered SC. A deterio-
rating item is stored in the retailer stage R, its inventory level
is periodically updated at discrete time instants kT , k ∈ Z+,
T is the review period. Explicit dependency on T will be
dropped in the following to simplify notation. The following
assumptions hold:

• A1) the decay factor of the product is σ ∈ [σ− σ+] ⊂
(0, 1);

• A2) any replenishment order issued at time k is realized
at time (k + n) ∈ Z+;

• A3) the customer demand w(k) is uniformly bounded,
and, at any given time instant k, its future trajectory
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TABLE 1. Nomenclature

Variables/Parameters/Sets
y(k) on hand stock level
w(k) customer demand
v(k) fulfilled demand
u(k) replenishment order
n lead time
σ ∈ [σ−σ+] uncertain decay factor
Jk functional cost
Uk = {u(j|k)} j = k, · · · , k+N − 1 predicted control sequence
u(j|k) = Bd(j)ck sample of Uk

Bd(j) B spline basis function
ck vector of control points
e(k + n+ l|k) predicted tracking error
u−
k ,u+

k bounds on u(j|k)
λi, qi scalar weights in Jk
Pk prediction horizon
M length of Pk

Wk compact set containing
w(j), j = k, · · · , k +M

w−(k + ℓ), w+(k + ℓ) border trajectories of Wk

w̄(k + ℓ) central trajectory of Wk

Hk control horizon
N length of Hk

MANUFACTURER

SC	modelechelonSingle	

y(k)
levelon	hand	stock	

k)(v
customer	demand	fulfilled

(k)w
customer	demandactual

)n-u(k
lead	time

u(k)
orderissued

RETAILER

FIGURE 1.

w(k + ℓ), ℓ = 1, · · · ,M , may freely oscillate in-
side a known compact set Wk inferiorly and superi-
orly bounded by two limit trajectories: w−(k + ℓ) and
w+(k + ℓ), ℓ = 1, · · · ,M respectively. The M -steps
time interval Pk

△
= [k + 1, k + M ] is called prediction

horizon. The minimum value of w−(k + ℓ) and the
maximum of w−(k + ℓ) over Pk are denoted by w−

k

and w+
k respectively. Figure 2 shows an example of a

possible customer demand over a fixed Wk. Figure 3
shows an example of a possible unexpected customer
demand violating A3);

• A4) inventory replenishment and goods delivery are
executed simultaneously at the beginning of each review
period. Backorders are not allowed.

By the above modeling assumptions the following uncertain
balance equation is directly obtained

y(k + 1) = σ(y(k) + u(k − n)− v(k)), y(0) ≥ 0, (7)

where: y(k) is the on-hand inventory level, u(k − n) is the
order issued at time k − n and realized at time k, v(k) is the
amount of customer demand that can be satisfied at time k. It
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is given by
v(k)

△
= min{w(k), y1(k)} (8)

where
y1(k)

△
= y(k) + u(k − n)

is the total quantity of stocked goods available for sale.

IV. PROBLEM SETUP
Given the SC model described in the previous section, the
problem we face is to define an RRP endowed with the
following Skills: S1) maximize the satisfied customer de-
mand, S2) minimize overstocking, S3) produce a smooth
replenishment orders sequence u(k), k ∈ Z+, S4) quickly
adapt to unexpected patterns of the customer demand.
S1 and S2 define the basic requirement for an efficient SC
management: satisfy the customer demand at minimum cost,
S3 is useful to reduce the costs related to frequent sharp
changes in the quantity of ordered goods [23], S4 defines
the desired resilience property with respect to unpredicted
changes of customer behavior.
The uncertainties on the SC dynamics and the inherent antag-
onism of the above abilities call for an RAMPC formulation
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of the above problem. This point is discussed in the next two
sections: in section IV-A we define an RP based on an RMPC
approach to specifically deal with S1-S3. In section IV-B we
define the RRP based on an RAMPC approach endowing the
RP with S4.

A. THE RP
The RP is obtained through an RMPC approach. It consists
in minimizing, at each k, the maximum value assumed by
a suitably defined cost functional for σ ∈ [σ−, σ+] and
w(k + ℓ) ∈ Wk, ℓ = 1, · · · ,M . The practical application
of the resulting law requires: 1) to repetitively solve at each
k ∈ Z+ an MCOP defined over a future control horizon
Hk

△
= [k, k + N − 1], for some N ≤ M , 2) to only apply

the first sample of the computed predicted control sequence
Uk

△
= [u(k|k), · · · , u(k+N−1|k)], according to the moving

horizon philosophy typical of MPC.
The MCOP is now formally defined on the basis of S1, S2

and S3,

min
Uk

max
σ∈[σ−,σ+],w(·)∈Wk

Jk, k ∈ Z+ (9)

subject to:u−
k ≤ u(k + i|k) ≤ u+

k , i = 0, · · · , N − 1 (10)

Jk =
N∑
i=1

eT (k + n+ i|k)qie(k + n+ i|k)

+
N−1∑
i=1

λi∆u2(k + i|k) (11)

e(k + n+ i|k) △
= w+(k + n+ i)− y(k + n+ i|k) (12)

∆u(k + i|k) △
= u(k + i|k)− u(k + i− 1|k) (13)

y(k + n+ i|k) △
= σn+iy(k) +

n−1∑
ℓ=0

σn+i−ℓu(k + ℓ− n)

+
i−1∑
ℓ=0

σi−ℓu(k + ℓ|k)−
n+i−1∑
ℓ=0

σn+i−ℓv(k + ℓ|k) (14)

Remark 3:
1) By (11) and (12) we have M ≥ N + n, ∀k ∈ Z+.
2) The signal error (12) has been defined with reference to a
time-varying target inventory level given by w+(k + n+ i),
i = 1, · · · , N . In the light of S1, S2, and of the bounded
uncertainty affecting the customer demand, this is the most
appropriate choice: it is useful to maximize the satisfied
demand over each [k + n + 1, k + n + N ] ⊆ Pk and, at
the same time, avoids unnecessary larger stock levels.
3) The second term

∑N−1
i=1 λi∆u2(k + i|k) of the cost func-

tional penalizes large variations between consecutive values
of the control effort. In the light of S3, this is useful to
reduce the unavoidable costs related to an RP with sharp
discontinuties.
4) The scalar weights qi, i = 1, · · · , N , and λi, i =

1, · · · , N −1, are positive coefficients introduced to progres-
sively decrease the influence of future predictions.
5) The predicted signal v(k + ℓ|k) in (14) is computed using
(8) under the following assumptions:

• A5) w(k+ℓ|k) = w̄(k+ℓ) , ℓ = 1, · · · , n+i−1, where
w̄(k + ℓ) is the central trajectory of Wk, (see figure 2);

• A6) y(k+ i)+u(k+ i−n) ≥ w(k+ i), i = 0, · · · , n+
N − 1.

A5) is justified because, in agreement with the minimax
approach, w̄(k + ℓ), ℓ = 1, · · · , n + i − 1 is the solution
of the following minimax problem:

min
w(k+ℓ|k)

max
w(k+ℓ)∈Wk

(
n+i−1∑
ℓ=1

eTw(k + ℓ|k)ew(k + ℓ|k)

)1/2

(15)

where

ew(k+ ℓ|k) △
= w(k+ ℓ|k)−w(k+ ℓ), ℓ = 1, · · · , n+ i− 1

A6) is justified because the control sequence is designed so
as to minimize the maximum weighted ℓ2 norm of a tracking
error defined as the difference between the predicted inven-
tory level and the maximum predicted customer demand.
As a consequence of A5), A6) and (8), the predicted term
v(k + ℓ|k) in (14) can be expressed as

v(k + ℓ|k) = v̄(k + ℓ|k) + δv(k + ℓ|k) (16)

where: v̄(k|k) = w(k) , δv(k|k) = 0, v̄(k+ ℓ|k) = w̄(k+ ℓ)
and δv(k + ℓ|k) is the approximation error that, by (15), has
the minimum maximum l2 norm over each Pk.

B. THE RRP
The RRP is obtained through an RAMPC approach. It con-
sists in endowing the RP with a simple adaptive algorithm.
The adaptation mechanism is based on the possibility of
measuring the disturbance (i.e. w(k)) and on the receding
horizon nature of MPC. Assume that for some k̄, an un-
expected demand value w(k̄) violating A3) is observed (see
figure 3); then a new set Wk̄ including the measured w(k̄)
is defined. This is equivalent to redefine A3) coherently with
the observed w(k̄). As a consequence, also the signal error
(12) is defined with respect to a new target inventory level.
Owing to the moving horizon implementation of the MPC,
the control law is fastly adapted to this unpredicted change
with only a minimal computational effort. This procedure is
repeated every time the current A3) is violated.
Remark 4: We remark the difficulty of obtaining a similar low
cost adaptability using demand forecasting methods based on
time series analysis: even using adaptive identification algo-
rithms, the intrinsic inertia of ARMA models slows down the
process of adjusting the parameter estimates according to the
incoming measures of customer demand.
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C. COMPUTING THE HARD CONSTRAINTS ON THE
RRP
The predicted control law u(k + i|k) must satisfy (10).
These constraints are determined taking into account S1, S2
and the necessity of limiting the amplitude of the interval
[u−

k , u
+
k ] to bound the bullwhip effect. Consequently, we

want to determine the smallest amplitude interval [u−
k , u

+
k ]

that guarantees S1 for all possible customer demands obeying
A3). To face the problem raised by the uncertainties on the
SC dynamics, we determine u−

k and u+
k making reference to

two possible, limit scenarios compatible with the following
operating condition of the SC:

- v(k+ i) = w(k+ i), i = 0, · · · , n+N − 1, (according
to A6) of Remark 3) ;

- w(k + i), i = 0, · · · , n + N − 1, is a constant signal
with value w̃k ∈ [w−

k , w
+
k ]. The two limit scenarios are

w̃k = w−
k and w̃k = w+

k .
We now consider the following problem: given a constant
w̃k, we want to determine the corresponding constant control
input ũk over each Hk, that guarantees a steady-state value
ỹk of y(k) satisfying ỹk ≥ w̃k, ∀σ ∈ [σ−, σ+].
This problem can be conveniently solved applying Z-
transform methods to (7). To this purpose denote by
Wu,y(z) = σ

zn(z−σ) the transfer function between the Z
transforms of u(k) and y(k), k ∈ Z+. Analogously let
Ww,y(z) = σ

(z−σ) be the transfer function between the Z
transforms of v(k) = w(k) and y(k), k ∈ Z+. By the final
value theorem [24] applied to (7) we have

ỹk = [Wu,y(z)]z=1ũk − [Ww,y(z)]z=1w̃k, (17)

If σ were exactly known, then, choosing ũk = w̃k

σ , equation
(17) would readily imply ỹk = w̃k,∀w̃k ∈ [w−

k , w
+
k ]. As σ

is uncertain, the minimum ũk guaranteeing ỹk ≥ w̃k, ∀σ ∈
[σ−, σ+] is uk = w̃k/σ

−.
In conclusion, over each Hk we choose u−

k according to the
limit case 1: w̃k = w−

k and u+
k according to the limit case 2:

w̃k = w+
k , obtaining

u−
k

△
= w−

k /σ
− ≤ u(k + i|k) ≤ w+

k /σ
− △
= u+

k (18)
k ∈ Z+, i = 0, · · · , N − 1

The constraints u−
k and u+

k are uniformly bounded as a
consequence of the assumed uniform boundedness of the
customer demand.

V. FORMULATION OF THE MCOP AS A CRLS PROBLEM
We now show that through a B-splines parametrization of
the predicted control sequence Uk, the MCOP (9)-(14) can
be reformulated as a CRLS problem. This allows us to
drastically reduce the numerical complexity of the algorithm
solving the MCOP. Assume to express the sequence Uk

solving the MCOP (9)-(14) as the sampled version of a B-
spline function. Hence by (3) we have

u(j|k) △
= Bd(j)ck, j = k, · · · , k +N − 1 (19)

The idea is to consider the vector of control points ck
△
=

[ck,1, · · · , ck,ℓ]T uniquely defining u(j|k) as the elements
of the vector f̂ solving (5). This allows us formulating the
MCOP as a CRLS problem. Proving this claim requires the
following math steps.
As σ ∈ [σ−σ+], then σk can be expressed as

σk = (σ̄ + δσ)k = σ̄k +∆σk (20)

where σ̄ is the nominal value of σ and ∆σk
△
= (σ̄+δσ)k−σ̄k.

Hence the free response term of (14) can be expressed as

σn+iy(k) = (σ̄n+i +∆σn+i)y(k) (21)

analogously, for the other terms of (14), we have
n−1∑
ℓ=0

σn+i−ℓu(k + ℓ− n)

=
n−1∑
ℓ=0

(σ̄n+i−ℓ +∆σn+i−ℓ)u(k + ℓ− n) (22)

i−1∑
ℓ=0

σi−ℓu(k + ℓ|k) =
i−1∑
ℓ=0

(σ̄i−ℓ +∆σi−ℓ)Bd(k + ℓ)ck (23)

n+i−1∑
ℓ=0

σn+i−ℓv(k + ℓ|k)

=

n+i−1∑
ℓ=0

(σ̄n+i−ℓ +∆σn+i−ℓ)v(k + ℓ|k) (24)

Equations (21)-(24) allow us:
1) to separate the terms depending on the control signal (19)
from the independent ones;
2) to separate, in either groups of terms, the known quantities
from the unknown ones.
Points 1) and 2) allow us to rewrite the tracking error (12)
in terms of matrices Dk,i, δDk,i and vectors bk,i, δbk,iand ck
obtaining an expression formally similar to (D+δD)f−(b+
δb) in (4).
First of all, observe that the tracking error (12) can be
rewritten as

e(k + n+ i|k) = (bk,i + δbk,i)− (Dk,i + δDk,i)ck (25)
i = 1, · · · , N

where

bk,i
△
= w+(k + n+ i)− σ̄n+iy(k)−

n−1∑
ℓ=0

σ̄n+i−ℓu(k + ℓ− n)

+
n+i−1∑
ℓ=0

σ̄n+i−ℓv̄(k + ℓ|k) (26)

δbk,i
△
= −∆σn+iy(k)−

n−1∑
ℓ=0

∆σn+i−ℓu(k + ℓ− n) +

n+i−1∑
ℓ=0

σ̄n+i−ℓδv(k + ℓ|k) +
n+i−1∑
ℓ=0

∆σn+i−ℓv(k + ℓ|k) (27)
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Dk,i
△
=

i−1∑
ℓ=0

σ̄i−ℓBd(k + ℓ) (28)

δDk,i
△
=

i−1∑
ℓ=0

∆σi−ℓBd(k + ℓ) (29)

Equations (26)-(27) have been obtained expressing v(k+ℓ|k)
as v(k+ ℓ|k) = v̄(k+ ℓ|k) + δv(k+ ℓ|k), where v̄(k+ ℓ|k)
and δv(k + ℓ|k) are defined as in point 5 of Remark 3.
Similarly, the term ∆u(k + i|k) in (11) can be rewritten as

∆u(k + i|k) = (buk,i
+ δbuk,i

)− (Duk,i
+ δDuk,i

)ck (30)
i = 1, · · · , N − 1

where

buk,i
= δbuk,i

= 0

Duk,i
= − (Bd(k + i)−Bd(k + i− 1))

δDuk,i
= 0

Define the following vectors and matrices

ek =



q
1/2
1 e(k + n+ 1|k)

...
q
1/2
N e(k + n+N |k)
λ
1/2
1 ∆u(k + 1|k)

...
λ
1/2
N−1∆u(k +N − 1|k)


, Dk =



q
1/2
1 Dk,1

...
q
1/2
N Dk,N

λ
1/2
1 Duk,1

...
λ
1/2
N−1Duk,N−1



bk =



q
1/2
1 bk,1

...
q
1/2
N bk,N

0
...
0


, δbk =



q
1/2
1 δbk,1

...
q
1/2
N δbk,N

0
...
0


, (31)

δDk =



q
1/2
i δDk,1

...
q
1/2
N δDk,N

0
...
0


(32)

Exploiting the above defined vectors and matrices, allows us
to express the 2N − 1 equations (25) and (30) in a compact
matrix form and to reformulate the MCOP (9)-(14) as:

min
ck

max
∥δDk∥≤βk ∥δbk∥≤ξk

Jk (33)

where

Jk = ∥(bk + δbk)− (Dk + δDk)ck∥2 (34)
subject to u−

k ≤ ck,j ≤ u+
k , j = 1, · · · , ℓ (35)

Constraints (35) are a direct consequence of (19) and of the
convex hull property of B splines.
It is seen that solution of (33), (34) subject to (35) is the
same of a problem of the kind (4) subject to (6). Therefore
the solution of the MCOP (9)-(14) is given by the vector ck
solving the following CRLS problem:

min
ck

∥bk −Dk ck∥+ βk∥ck∥+ ξk, k ∈ Z+, (36)

subject to (35).
The above calculations show that the solution of the RAMPC
can be lead back to that of a CRLS problem for which very
numerical efficient interior point methods exist.

In conclusion, each sample u(k) of the RRP results from
the receding horizon implementation of Uk and from a time-
varying target inventory level defined as specified in Section
IV-B.

Remark 5: Recalling the minimax problem (15), and taking
into account the way the vector δbk is defined by (27) and
(31), it is seen that, choosing v(k + ℓ|k) as in (16), the
corresponding upper bound ξk of ∥δbk∥ takes its minimum
value. As a consequence also the term ξk that in (36) is
independent of ck is minimized. This implies that we actually
solve the MCOP problem (9),(14).

VI. THE STABILITY AND FEASIBILITY ISSUE
The following theorem holds.
Theorem The MCOP is feasible and the physical variables
u(k) and y(k) are uniformly bounded.
Proof The feasibility of the MCOP is a consequence of
modeling u(j|k) as in (19): the vector ck solves the equiva-
lent CRLS problem (33), and, at the same time, satisfies (35).
Hence also (10) is satisfied by the convex hull property of B-
splines.
The uniform boundedness of u(k) follows from:
- 1) It is obtained by the receding horizon implementation of
u(j|k);
- 2) u(j|k) is uniformly bounded as a direct consequence of
(19) , (35), the uniform boundedness of u−

k and u+
k and the

convex hull property of B-splines.
The uniform boundedness of y(k) follow as a direct conse-
quence of the internal asymptotic stability of the SC model
(σ < 1).

VII. SIMULATION RESULTS AND DISCUSSION
The simulations reported in this section have been imple-
mented using Matlab R2018b.

The considered SC model is defined by a time delay n = 5,
and an uncertain decay factor σ ∈ [σ−, σ+] = [0.86, 0.9].
At each k, the future values of w(k), vary inside a compact
set Wk, with length M = 17, like the example shown in
Figure 2. The whole trajectory of the actual w(k) considered
in this simulation is reported in Figure 4. It shows two
unforeseen patterns over the intervals [k1 k2] = [170 380]
and [k3 k4] = [630 750] respectively. Figure 5 shows the new

 

31

B.IETTO and V.ORSINI:Designing a resilient supply chain RAM-PC-P-UG-UFI

VOLUME 1, 2022



0 100 200 300 400 500 600 700 800

Period k

The actual customer demand w(k) (solid line) with unexpected behaviors (oval curve)

0

50

100

150

w
(k

) 
[a

m
o
u
n
t 
o
f 
p
ro

d
u
c
t]

FIGURE 4.

0 100 200 300 400 500 600 700 800

Period k

The actual customer demand w(k) (solid line),

the new upper w +(k) and the new lower w- (k)  boundaries (dashed lines) 

0

50

100

150

w
(k

) 
[a

m
o
u
n
t 
o
f 
p
ro

d
u
c
t]

FIGURE 5.

set Wk resulting from a consecutive contiguous overlapping
of all the Wk’s enclosing the whole actual w(k) (see Section
IV-B).
The control algorithm generating the RRP is defined by the

following parameters:
- degree of splines: d = 3,
- number of control points over each control horizon Hk:
ℓ = 6,
- length of the control horizon Hk = N = M − n = 12, (see
Remark 3),
- y(0) = 0,
- coefficient weighting the i-th element e(k + n + i|k):
qi = e−0.1 (i−1),
- coefficient weighting the i-th element ∆u(k + i|k): λi =
e−1 (i−1).

The model equation (7) has been implemented assuming
σ = 0.885. The obtained RRP and its constraints are shown
in Figure 6. The solid line reported in 7 is the actual inven-
tory level y(k), the dashed line is the corresponding target
trajectory ỹ(k) = w+(k) . The satisfied customer demand is
reported in Figure 8.

This figure evidences the resilience property of the pro-
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FIGURE 7.
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FIGURE 8.

posed RP: the adaptation mechanism of Section IV-B allows
a full satisfaction of the customer demand though the pres-
ence of two unpredicted patterns.
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A. COMPARISON WITH THE ORDER-UP-TO (OUT) RP
We compared the RRP with the RP generated by

u(k) = (ỹ − σn+1y(k)−
n+1∑
ℓ=2

σℓu(k − ℓ+ 1))/σ (37)

where ỹ is the constant target inventory level. Equation (37)
is a modified version of the classical OUT RP [25] that has
been adapted to the uncertain, retarded plant equation (7).
The values ỹ = 300 and σ = 0.88 have been chosen.
To increase the amount of satisfied demand, the reference
level has been chosen significantly larger than the maxi-
mum customer demand over the whole simulation period
(maxk w

+(k) = 85). The model equation (7) has been
implemented assuming: y(0) = 0 and σ = 0.885. The
generated RS u(k) and the corresponding inventory level
y(k) are reported in Figures 9 and 10 respectively. Figure 11
highlights that the OUT RP is not able to fulfill the customer
demand in the correspondence of the unpredicted pattern
over the interval [170 380]. Note that this occurs though the
considerably larger value of the desired inventory level (300
for the OUT RP and maxk w

+(k) = 85 for our method).
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FIGURE 9.
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FIGURE 11.

Figure 12 shows that the RRP provides a smoother control
signal with respect to the OUT RP. This is due to : 1) intro-
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FIGURE 12.

ducing the term
∑N−1

i=1 λi∆u2(k+ i|k) in the cost functional
(11), 2) using polynomial B-splines to express u(j|k).
The enhanced degree of smoothness deriving from the RRP
decreases the order quantity changes with respect to the OUT
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RP.

VIII. CONCLUSIONS
We considered an SC inventory management problem char-
acterized by the following elements of complexity: 1) per-
ishable stocked goods with uncertain decay factor, 2) an un-
certain future customer demand that may exhibit unexpected
behaviors. Using a RAMPC approach we proposed a solution
consisting of an RRP balancing the opposite needs of low
cost inventory holding and low percentage of lost sales. The
RRP is also able to quickly recover from unexpected changes
of customer demand. The numerical simulations confirmed
the effectiveness of the approach.
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